
Pyglet

Approximately what you can learn in an evening

Neil Muller

31st August 2013



Introducing Pyglet

I �a cross-platform windowing and multimedia library for

Python.�

I i.e. The other game framework for python

I Fewer dependancies than pygame, and better bundled

installation

I Minimal dependencies on Windows and MacOS, which is a
great plus

I Python obviously
I Only AVBin as an additional dependency, and that's optional

I Rather more dependancies on Linux (OpenGL libraries, etc),
but they're usually available anyway



Introducing Pyglet

I �a cross-platform windowing and multimedia library for

Python.�

I i.e. The other game framework for python

I Fewer dependancies than pygame, and better bundled

installation

I Minimal dependencies on Windows and MacOS, which is a
great plus

I Python obviously
I Only AVBin as an additional dependency, and that's optional

I Rather more dependancies on Linux (OpenGL libraries, etc),
but they're usually available anyway



Introducing Pyglet

I �a cross-platform windowing and multimedia library for

Python.�

I i.e. The other game framework for python

I Fewer dependancies than pygame, and better bundled

installation

I Minimal dependencies on Windows and MacOS, which is a
great plus

I Python obviously
I Only AVBin as an additional dependency, and that's optional

I Rather more dependancies on Linux (OpenGL libraries, etc),
but they're usually available anyway



Introducing Pyglet

I �a cross-platform windowing and multimedia library for

Python.�

I i.e. The other game framework for python

I Fewer dependancies than pygame, and better bundled

installation

I Minimal dependencies on Windows and MacOS, which is a
great plus

I Python obviously
I Only AVBin as an additional dependency, and that's optional

I Rather more dependancies on Linux (OpenGL libraries, etc),
but they're usually available anyway



Some Examples

I Hello World and friends



The important di�erences from pygame

I Graphics based entirely on OpenGL

I Surface is always an OpenGL context
I All the underlying graphics operations are OpenGL

I Not a higher level wrapper than PyOpenGL, though

I Less clunky event loop customisation that pygame

I Supports a signi�cantly wider variety of sound and video

formats by using AVBin

I Breaks in much more interesting ways if it uses AVBin

I Nifty Procedural sound module

I Less game-focussed than pygame

I No equivalent for several pygame features (sprite collisions,
etc).

I Better starting point for widget work (provides labels and
various text management utilities for the low level stu�)

I Widgets are still entirely roll your own, though



The important di�erences from pygame

I Graphics based entirely on OpenGL

I Surface is always an OpenGL context
I All the underlying graphics operations are OpenGL

I Not a higher level wrapper than PyOpenGL, though

I Less clunky event loop customisation that pygame

I Supports a signi�cantly wider variety of sound and video

formats by using AVBin

I Breaks in much more interesting ways if it uses AVBin

I Nifty Procedural sound module

I Less game-focussed than pygame

I No equivalent for several pygame features (sprite collisions,
etc).

I Better starting point for widget work (provides labels and
various text management utilities for the low level stu�)

I Widgets are still entirely roll your own, though



The important di�erences from pygame

I Graphics based entirely on OpenGL

I Surface is always an OpenGL context
I All the underlying graphics operations are OpenGL

I Not a higher level wrapper than PyOpenGL, though

I Less clunky event loop customisation that pygame

I Supports a signi�cantly wider variety of sound and video

formats by using AVBin

I Breaks in much more interesting ways if it uses AVBin

I Nifty Procedural sound module

I Less game-focussed than pygame

I No equivalent for several pygame features (sprite collisions,
etc).

I Better starting point for widget work (provides labels and
various text management utilities for the low level stu�)

I Widgets are still entirely roll your own, though



The important di�erences from pygame

I Graphics based entirely on OpenGL

I Surface is always an OpenGL context
I All the underlying graphics operations are OpenGL

I Not a higher level wrapper than PyOpenGL, though

I Less clunky event loop customisation that pygame

I Supports a signi�cantly wider variety of sound and video

formats by using AVBin

I Breaks in much more interesting ways if it uses AVBin

I Nifty Procedural sound module

I Less game-focussed than pygame

I No equivalent for several pygame features (sprite collisions,
etc).

I Better starting point for widget work (provides labels and
various text management utilities for the low level stu�)

I Widgets are still entirely roll your own, though



The important di�erences from pygame

I Graphics based entirely on OpenGL

I Surface is always an OpenGL context
I All the underlying graphics operations are OpenGL

I Not a higher level wrapper than PyOpenGL, though

I Less clunky event loop customisation that pygame

I Supports a signi�cantly wider variety of sound and video

formats by using AVBin

I Breaks in much more interesting ways if it uses AVBin

I Nifty Procedural sound module

I Less game-focussed than pygame

I No equivalent for several pygame features (sprite collisions,
etc).

I Better starting point for widget work (provides labels and
various text management utilities for the low level stu�)

I Widgets are still entirely roll your own, though



The important di�erences from pygame

I Graphics based entirely on OpenGL

I Surface is always an OpenGL context
I All the underlying graphics operations are OpenGL

I Not a higher level wrapper than PyOpenGL, though

I Less clunky event loop customisation that pygame

I Supports a signi�cantly wider variety of sound and video

formats by using AVBin

I Breaks in much more interesting ways if it uses AVBin

I Nifty Procedural sound module

I Less game-focussed than pygame

I No equivalent for several pygame features (sprite collisions,
etc).

I Better starting point for widget work (provides labels and
various text management utilities for the low level stu�)

I Widgets are still entirely roll your own, though



The important di�erences from pygame

I Graphics based entirely on OpenGL

I Surface is always an OpenGL context
I All the underlying graphics operations are OpenGL

I Not a higher level wrapper than PyOpenGL, though

I Less clunky event loop customisation that pygame

I Supports a signi�cantly wider variety of sound and video

formats by using AVBin

I Breaks in much more interesting ways if it uses AVBin

I Nifty Procedural sound module

I Less game-focussed than pygame

I No equivalent for several pygame features (sprite collisions,
etc).

I Better starting point for widget work (provides labels and
various text management utilities for the low level stu�)

I Widgets are still entirely roll your own, though



Resource Handling

I Resources loaded from a speci�ed search path

I Filenames are checked for case, even on case-insenstive �le
systems

I Resources speci�ed only by �lename, with a �rst found wins
policy

I Can search zip �les and other funky tricks like that, for ease of
distribution

I Can load images, sounds, fonts, arbitary �les

I Also useful text options - plan text & html with formatting

I Returns these as Document objects for ease of manipulation

I Search path is relative to the �le being run

I Except when it sometimes isn't, when it will be relative to the
module's __init__.py

I Surprisingly easy to get wrong, as often found when judging

pyweek games



Resource Handling

I Resources loaded from a speci�ed search path

I Filenames are checked for case, even on case-insenstive �le
systems

I Resources speci�ed only by �lename, with a �rst found wins
policy

I Can search zip �les and other funky tricks like that, for ease of
distribution

I Can load images, sounds, fonts, arbitary �les

I Also useful text options - plan text & html with formatting

I Returns these as Document objects for ease of manipulation

I Search path is relative to the �le being run

I Except when it sometimes isn't, when it will be relative to the
module's __init__.py

I Surprisingly easy to get wrong, as often found when judging

pyweek games



Resource Handling

I Resources loaded from a speci�ed search path

I Filenames are checked for case, even on case-insenstive �le
systems

I Resources speci�ed only by �lename, with a �rst found wins
policy

I Can search zip �les and other funky tricks like that, for ease of
distribution

I Can load images, sounds, fonts, arbitary �les

I Also useful text options - plan text & html with formatting

I Returns these as Document objects for ease of manipulation

I Search path is relative to the �le being run

I Except when it sometimes isn't, when it will be relative to the
module's __init__.py

I Surprisingly easy to get wrong, as often found when judging

pyweek games



Resource Handling

I Resources loaded from a speci�ed search path

I Filenames are checked for case, even on case-insenstive �le
systems

I Resources speci�ed only by �lename, with a �rst found wins
policy

I Can search zip �les and other funky tricks like that, for ease of
distribution

I Can load images, sounds, fonts, arbitary �les

I Also useful text options - plan text & html with formatting

I Returns these as Document objects for ease of manipulation

I Search path is relative to the �le being run

I Except when it sometimes isn't, when it will be relative to the
module's __init__.py

I Surprisingly easy to get wrong, as often found when judging

pyweek games



Resource Handling

I Resources loaded from a speci�ed search path

I Filenames are checked for case, even on case-insenstive �le
systems

I Resources speci�ed only by �lename, with a �rst found wins
policy

I Can search zip �les and other funky tricks like that, for ease of
distribution

I Can load images, sounds, fonts, arbitary �les

I Also useful text options - plan text & html with formatting

I Returns these as Document objects for ease of manipulation

I Search path is relative to the �le being run

I Except when it sometimes isn't, when it will be relative to the
module's __init__.py

I Surprisingly easy to get wrong, as often found when judging

pyweek games



Resource Handling

I Resources loaded from a speci�ed search path

I Filenames are checked for case, even on case-insenstive �le
systems

I Resources speci�ed only by �lename, with a �rst found wins
policy

I Can search zip �les and other funky tricks like that, for ease of
distribution

I Can load images, sounds, fonts, arbitary �les

I Also useful text options - plan text & html with formatting

I Returns these as Document objects for ease of manipulation

I Search path is relative to the �le being run

I Except when it sometimes isn't, when it will be relative to the
module's __init__.py

I Surprisingly easy to get wrong, as often found when judging

pyweek games



Event Handlers

I Usual list of events watched

I Windows for instance have on_resize, on_draw,
on_key_press, on_mouse_motion, on_mouse_press,
on_mouse_leave, on_move, etc.

I EventLoop has on_enter, on_exit, etc.
I Also timed events, and so forth

I Also a default idle handler, which is responsible for animations,

timed events, etc.

I Can easily chain event handlers

I Event handlers processed in a stack - going top down

I returning True from an event handler short circuits processing,

as expected

I Since handlers are a stack, easy to remove handlers as well
(pop_handler)

I Easy to register custom events

I Subclass EventDispatcher and register the event



Event Handlers

I Usual list of events watched

I Windows for instance have on_resize, on_draw,
on_key_press, on_mouse_motion, on_mouse_press,
on_mouse_leave, on_move, etc.

I EventLoop has on_enter, on_exit, etc.
I Also timed events, and so forth

I Also a default idle handler, which is responsible for animations,

timed events, etc.

I Can easily chain event handlers

I Event handlers processed in a stack - going top down

I returning True from an event handler short circuits processing,

as expected

I Since handlers are a stack, easy to remove handlers as well
(pop_handler)

I Easy to register custom events

I Subclass EventDispatcher and register the event



Event Handlers

I Usual list of events watched

I Windows for instance have on_resize, on_draw,
on_key_press, on_mouse_motion, on_mouse_press,
on_mouse_leave, on_move, etc.

I EventLoop has on_enter, on_exit, etc.
I Also timed events, and so forth

I Also a default idle handler, which is responsible for animations,

timed events, etc.

I Can easily chain event handlers

I Event handlers processed in a stack - going top down

I returning True from an event handler short circuits processing,

as expected

I Since handlers are a stack, easy to remove handlers as well
(pop_handler)

I Easy to register custom events

I Subclass EventDispatcher and register the event



Sprites

I Signi�cantly simpler than pygame sprites

I Mainly a useful way of reusing the same image for multiple

objects on screen

I Several features to help with e�cient rendering

I Can also use groups for ordering e�ects



Sprites

I Signi�cantly simpler than pygame sprites

I Mainly a useful way of reusing the same image for multiple

objects on screen

I Several features to help with e�cient rendering

I Can also use groups for ordering e�ects



Other notes

I Python 3 port in testing stages (pyglet 1.2alpha has support)

I recent work has been slow, though

I Support for GLSL still a work in progress

I Currently doable, but support classes and functions are a bit
lacking

I Consequently, it's all a bit �ddly to get working

I Various 3rd party modules around to help, though



Other notes

I Python 3 port in testing stages (pyglet 1.2alpha has support)

I recent work has been slow, though

I Support for GLSL still a work in progress

I Currently doable, but support classes and functions are a bit
lacking

I Consequently, it's all a bit �ddly to get working

I Various 3rd party modules around to help, though


