
What's New in Python 3.1

Some Notes

27th June 2009



New features

I PEP372: Ordered Dictionaries (collections.OrderedDict)

I collections.Counter - count unique items in a sequence

I (7).bit_length()

I Support for multiple context managers when using with

statements

I contextlib.nested deprecated

I itertools gains combinations_with_replacement, compress

I itertools.count now has optional step parameter
I itertools.count takes any type supporting PyNumber_Add,

including Fractions and Decimals

I logging has a NullHandler for discarding logged messages

I importlib - pure python implementation of import and
__import__

I unittest supports skipping tests

I also allows tests to be marked as expected to fail



General improvements

I io module replaced with version written in C - greatly improves
performance from 3.0

I python io module still in standard library if needed

I ��with-computed-gotos� con�gure option - uses tweaked
dispatch mechanism for compilers which support computed
gotos - 20% faster on some benchmarks

I PEP383: Non-decodable Bytes in System Character Interfaces

I collections.namedtuple supports

I Signi�cant speedups to UTF-8, UTF-16 & LATIN-1 decoding

I C extension added json module - signi�cantly faster

I json module no longer supports bytes - closer match to json
speci�cation

I format improvements

I PEP378: Format speci�er for thousands separator
I Automatic numbering of �elds



I round no longer silently converts integers to �oats

I repr(�oat) uses shortest available representation

I Decimal's can be created from �oats

I di�ers from repr - aims to be exact decimal representation of
actual �oating point number

I gzip.GzipFile, bz2.BZ2File support context manager protocol

I regex �ags can be passed to more re functions - re.sub,
re.split, re.subn

I pdb now supports zipimport

I better support for creating pickles for python 2 (pickle protocol
2)

I breaks interaction with python 3.0, but that should be using
pickle protocol 3 anyway



Deprecated features

I PyCObject deprecated in favour of new PyCapsule

I Adds additional type information - used to avoid avoid issues
with passing a object from one module to another.

I Destruct or takes object as a PyObject, rather than
PyCObject's (void*) or (void*, void*) logic

I string.maketrans() deprecated

I bytes, bytearry & str classes all have suitable maketrans
methods now



PEP 372: Order Dictionaries

I Preserves insertion order.

I Intended for use in json, ElementTree, etc.

I Standard library now uses OrderedDict by default in
Con�gParser & collections.namedtuple._asdict()

I True subclass of dict

I Nifty implementation - retains the O(1) amortised cost for dict
operations

I Isn't a true sequence, but support reversed



PEP 383: The Problem

I File system names on POSIX system are byte-strings

I encoding of the �lename isn't speci�ed anywhere, taken from
environment

I Entirely possible to have mixed encodings on the �le system
I All OS fs operations just use bytes, encoding and decoding

sensibly is a application problem

I Windows (NT onwards)

I NTFS names use UCS-2 sequences

I it's possible to have non-Unicode sequences, though those

meant to be non-trivial to create through the standard API's

I VFAT can mix UCS-2 and byte-string encoding - windows API
will do the guessing and conversion �somehow�

I Windows doesn't have a good byte-level API

I MACOS has a couple of extra wrinkles as HFS+ restricts
names to UTF-8, NFD normalised, strings



PEP383: So What?

I In py3k, default os operations (os.listdir, etc) return unicode
strings (although byte-strings can be asked for)

I In v3.0, On POSIX, os.listdir(�.�) will throw errors if not all
names can be converted, while os.listdir(b�.�) will work

I On windows, os.listdir(�.�) will return all the �lenames, but
os.listdir(b�.�) won't

I Using os.listdir(b�.�) and encoding to unicode via standard
error handlers isn't reversible (and may not be unique)



PEP383: surrogateescape, the error handler formally known

as �UTF8b�

I The sequence <valid unicode> DCxx CANNOT occur in
unicode strings

I DCxx DCxx is also obviously illegal

I Problematic strings are byte strings which cannot be decoded
to unicode - escape the sequences as DC + problematic byte
for all bytes.

I Reversible - illegal sequence DC + xx should be converted
back to byte xx.

I Null operation for valid unicode, so only arises when
encountering undecodable strings (wrong fsencoding, multiple
encodings in a single dir, etc).

I Implemented as the �surrogateescape� error handler



PEP383: Notes

I For most setups, this should never be triggered - only an issue
when fsencoding is wrong for the �le name in question

I Does allow converting arbitrary byte string input to required
form by explicitly using the error handler

I Security issues - Under this scheme, DC2F => �/�, etc.

I Sanitising input a lot harder if this is allowed.
I Avoided by not allowing ASCII characters to be escaped
I Scheme thus cannot be used on data from several non ISO

encodings - SHIFT JIS variants being the most prominent.

I Can test if a string can be passed through strict encoding to
see if escaped characters are present.

I Can't avoid the use of this when calling os functions with
unicode strings.



PEP383: Bene�ts

I Arbitrary fs names can be read into python strings, although
the strings are no longer valid unicode

I Round tripping works - encoding the invalid unicode to the
SAME fs encoding gives the same byte sequence

I Trans-coding - All bets are o�. No magic solution for
converting invalid encodings to valid encodings

I Doesn't eliminate byte interfaces - only aims to ensure certain
classes of application only need to worry about about dealing
with unicode strings, and thus avoid portability issues


